

Fakultät für Elektrotechnik und Informatik Institut für Verteilte Systeme AG Intelligente Systeme - Data Mining group

Data Mining I

Summer semester 2019

Lecture 12.a: Clustering – 4: Evaluation

Lectures: Prof. Dr. Eirini Ntoutsi

TAs: Tai Le Quy, Vasileios Iosifidis, Maximilian Idahl, Shaheer Asghar

Clustering topics covered in DM1

- 1. Partitioning-based clustering
 - kMeans, kMedoids
- 2. Density-based clustering
 - DBSCAN
- 3. Grid-based clustering
- 4. Hierarchical clustering
 - 1. Diana, Agnes, BIRCH, ROCK, CHAMELEON
- 5. Clustering evaluation

Cluster Validity

- In supervised learning, there is a variety of measures to evaluate how good a classifier is
 - accuracy, precision, recall, ...
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
 - That is a tricky question as "clusters are in the eye of the beholder"!

Clusters found in random data

Data Mining I @SS19: Clustering 4

Different Aspects of Cluster Validation

- Cluster validation has different goals:
 - Determining the clustering tendency of a set of data, i.e., distinguishing whether non-random structure actually exists in the data.
 - Comparing the results of a cluster analysis to externally known results, e.g., to externally given class labels.
 - Evaluating how well the results of a cluster analysis fit the data *without* reference to external information.
 Use only the data
 - Comparing the results of two different sets of cluster analyses to determine which is better.
 - Determining the 'correct' number of clusters.
- Another aspect: Do we want to evaluate the entire clustering or just individual clusters?

Measures of Cluster Validity

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following three types:
 - Internal Indices/Criteria: Used to measure the goodness of a clustering structure without any external information.
 - Sum of Squared Error (SSE)
 - External Indices/Criteria: Used to measure the extent to which cluster labels match externally supplied class labels.
 - Entropy
 - Relative Indices/Criteria: Used to compare two different clusterings or clusters.
 - Often an external or internal index is used for this function, e.g., SSE or entropy

Internal measures of cluster validity

- Idea: Check cluster characteristics, <u>do not</u> rely on external information
- Examples: cohesion and separation
- Cluster Cohesion: Measures how closely related are objects in a cluster
 - Cohesion is measured by the within cluster sum of squares (SSE)

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

- Cluster separation: Measures how distinct or well-separated a cluster is from other clusters
 - Separation is measured by the between clusters sum of squares

$$BSS = \sum_{i} |C_i| (m - m_i)^2$$

• where $|C_i|$ is the size of cluster *i* and *m* is the overall mean of all data points

Example

K=2 clusters:

$$WSS = (1 - 1.5)^{2} + (2 - 1.5)^{2} + (4 - 4.5)^{2} + (5 - 4.5)^{2} = BSS = 2 \times (3 - 1.5)^{2} + 2 \times (4.5 - 3)^{2} = 9$$

Total = 1 + 9 = 10

1

Internal measures of cluster validity

- A proximity graph based approach can also be used for definining cohesion and separation.
 - Cluster cohesion is the sum of the weight of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.

Internal Measures: Silhouette Coefficient

- Silhouette Coefficient combine ideas of both cohesion and separation, but for individual points, as well as clusters and clusterings
- For an individual point, *i*
 - Calculate **a** = average distance of *i* to the points in its cluster
 - □ Calculate **b** = min (average distance of *i* to points in another cluster)
 - The silhouette coefficient for a point is then given by

s = (b-a)/max(a,b)

- Typically between 0 and 1.
- The closer to 1 the better.

Can calculate the Average Silhouette width for a cluster or a clustering

External measures of cluster validity

- Idea: Measure the extent to which cluster labels match <u>externally</u> supplied class labels.
- Examples: entropy, purity

Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster

Class distribution

• Entropy of a cluster *j*: how pure in terms of the classes a cluster is: $e_j =$

$$= -\sum_{i=1}^{L} p_{ij} \log_2 p_{ij}$$

• p_{ij} : the probability of observing class *i* in cluster *j*. $p_{ij} = m_{ij}/m_j$

• Entropy of a clustering:
$$e = \sum_{j=1}^{k} \frac{m_j}{m} e_j$$

External measures of cluster validity

Purity focuses on the most likely class in the cluster

Cluster	Entertainment	Financial	Foreign	Metro	National	Sports	Entropy	Purity
1	3	5	40	506	96	27	1.2270	0.7474
2	4	7	280	29	39	2	1.1472	0.7756
3	1	1	1	7	4	671	0.1813	0.9796
4	10	162	3	119	73	2	1.7487	0.4390
5	331	22	5	70	13	23	1.3976	0.7134
6	5	358	12	212	48	13	1.5523	0.5525
Total	354	555	341	943	273	738	1.1450	0.7203

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster

Class distribution

• Purity of cluster *j*: $purity_j = max p_{ij}$

• Purity of the clustering:
$$purity = \sum_{j=1}^{k} \frac{m_j}{m} purity_j$$

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis. Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes

Things you should know from this lecture

- Cluster validity measures
- Internal indices
- External indices

Acknowledgement

- The slides are based on
 - KDD I lecture at LMU Munich (Johannes Aßfalg, Christian Böhm, Karsten Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Eirini Ntoutsi, Jörg Sander, Matthias Schubert, Arthur Zimek, Andreas Züfle)
 - Thank you to all TAs contributing to their improvement, namely Vasileios Iosifidis, Damianos Melidis, Tai Le Quy, Han Tran.