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Clustering topics covered in DM1

1. Partitioning-based clustering

 kMeans, kMedoids

2. Density-based clustering

 DBSCAN

3. Grid-based clustering

4. Hierarchical clustering

1. Diana, Agnes, BIRCH, ROCK, CHAMELEON

5. Clustering evaluation
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Cluster Validity 

 In supervised learning, there is a variety of measures to evaluate how good a classifier is

 accuracy, precision, recall, …

 For cluster analysis, the analogous question is how to evaluate the “goodness” of the resulting 
clusters?

 That is a tricky question as “clusters are in the eye of the beholder”! 
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Clusters found in random data
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Different Aspects of Cluster Validation

 Cluster validation has different goals:

 Determining the clustering tendency of a set of data, i.e., distinguishing whether non-random structure 
actually exists in the data. 

 Comparing the results of a cluster analysis to externally known results, e.g., to externally given class labels.

 Evaluating how well the results of a cluster analysis fit the data without reference to external information. 

- Use only the data

 Comparing the results of two different sets of cluster analyses to determine which is better.

 Determining the ‘correct’ number of clusters.

 Another aspect: Do we want to evaluate the entire clustering or just individual clusters?
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Measures of Cluster Validity

 Numerical measures that are applied to judge various aspects of cluster validity, are 
classified into the following three types:

 Internal Indices/Criteria: Used to measure the goodness of a clustering structure without any 
external information. 

 Sum of Squared Error (SSE)

 External Indices/Criteria: Used to measure the extent to which cluster labels match externally 
supplied class labels.

 Entropy

 Relative Indices/Criteria: Used to compare two different clusterings or clusters. 

 Often an external or internal index is used for this function, e.g., SSE or entropy
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Internal measures of cluster validity

 Idea: Check cluster characteristics, do not rely on external information

 Examples: cohesion and separation

 Cluster Cohesion: Measures how closely related are objects in a cluster

 Cohesion is measured by the within cluster sum of squares (SSE)

 Cluster separation: Measures how distinct or well-separated a cluster is from other clusters

 Separation is measured by the between clusters sum of squares

 where |Ci| is the size of cluster i and m is the overall mean of all data points
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Internal measures of cluster validity

 A proximity graph based approach can also be used for definining cohesion and separation.

 Cluster cohesion is the sum of the weight of all links within a cluster.

 Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.
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Internal Measures: Silhouette Coefficient

 Silhouette Coefficient combine ideas of both cohesion and separation, but for individual points, as 
well as clusters and clusterings

 For an individual point, i

 Calculate a = average distance of i to the points in its cluster

 Calculate b = min (average distance of i to points in another cluster)

 The silhouette coefficient for a point is then given by 

s = (b-a)/max(a,b) 

 Typically between 0 and 1. 

 The closer to 1 the better.

 Can calculate the Average Silhouette width for a cluster or a clustering
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External measures of cluster validity

 Idea: Measure the extent to which cluster labels match externally supplied class labels.

 Examples: entropy, purity

 Entropy of a cluster j: how pure in terms of the classes a cluster is:

 pij: the probability of observing class i in cluster j.

 Entropy of a clustering: 
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External measures of cluster validity

 Purity focuses on the most likely class in the cluster

 Purity of cluster j:

 Purity of the clustering: 
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A final note on cluster validity

“The validation of clustering structures is the most difficult and frustrating part of cluster analysis.   

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to 

those true believers who have experience and great courage.”

Algorithms for Clustering Data, Jain and Dubes
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Things you should know from this lecture

 Cluster validity measures

 Internal indices

 External indices
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